chains. The average non-bonded distance between C atoms of neighbouring chains is 4.3 Å. However, a number of C...C contacts within the range 3.71 (2)–4.15 (2) Å [mean value 3.98 (2) Å] contribute to stabilize the apolar region. The closest intermolecular contacts are that between C(5) and C(9) at -x-3, $y+\frac{1}{2}$, $z+\frac{1}{2}$ of 3.71 (2) Å, and that between C(3) and C(11) at x-3, $y-\frac{1}{2}$, $-z+\frac{1}{2}$ of 3.80 (2) Å.

This work was financially supported by the Progetto Finalizzato 'Chimica fine e secondaria II' of the Consiglio Nazionale delle Ricerche and in part by the MURST. We thank Professor E. Giglio for reading the manuscript.

References

- CAMPANELLI, A. R., CANDELORO DE SANCTIS, S., GIGLIO, E. & PETRICONI, S. (1984). Acta Cryst. C40, 631–635.
- Coiro, V. M., Manigrasso, M., Mazza, F. & Pochetti, G. (1987). Acta Cryst. C43, 850–854.
- COIRO, V. M. & MAZZA, F. (1989). Acta Cryst. C45, 1132-1136.
- COIRO, V. M., MAZZA, F. & POCHETTI, G. (1986). Acta Cryst. C42, 991-995.
- COIRO, V. M., MAZZA, F. & POCHETTI, G. (1987). Ann. Chim. (Rome), 77, 85–92.

- CONTE, G., DI BLASI, R., GIGLIO, E., PARRETTA, A. & PAVEL, N. V. (1984). J. Phys. Chem. 88, 5720-5724.
- DILL, K. A., KOPPEL, D. E., CANTOR, R. S., DILL, J. D., BENDEDOUCH, D. & CHEN, S. (1984). Nature (London), 309, 42-45.
- ESPOSITO, G., GIGLIO. E., PAVEL, N. V. & ZANOBI, A. (1987). J. Phys. Chem. 91, 356–362.
- ESPOSITO, G., ZANOBI, A., GIGLIO, E., PAVEL, N. V. & CAMPBELL, I. D. (1987). J. Phys. Chem. **91**, 83–89.
- GIGLIO, E., LORETI, S. & PAVEL, N. V. (1988). J. Phys. Chem. 92, 2858-2862.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- HATO, M. & SHINODA, K. (1973). Bull. Chem. Soc. Jpn, 46, 3889–3890.
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521-528.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MENGER, F. M. & DOLL, D. W. (1984). J. Am. Chem. Soc. 106, 1109-1113.
- MISSEL, P. J., MAZER, N. A., CAREY, M. C. & BENEDEK, G. B. (1982). Solution Behaviour of Surfactants: Theoretical and Applied Aspects, edited by K. L. MITTAL & E. J. FENDLER, pp. 373-390. New York: Plenum.
- PASCHER, I., SUNDELL, S. & HAUSER, H. (1981). J. Mol. Biol. 153, 791-806, 807-824.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 1173–1177

Structures of Diene-Tricarbonyl Iron Complexed *erythro* and *threo* Carbonates, Key Intermediates for the Preparation of 5,6-Dihetes and Lipoxin A4

BY LOÏC TOUPET

Groupe de Physique Cristalline, UA au CNRS 040804, Universite de Rennes I, Campus de Beaulieu, 35042 Rennes CEDEX, France

René Grée

Laboratoire de Chimie Organique Biologique, UA CNRS 704, ENSCR, Campus de Beaulieu, 35042 Rennes CEDEX, France

AND AGNÈS GIGOU-BARBEDETTE, JEAN-PAUL LELLOUCHE AND JEAN-PIERRE BEAUCOURT

Service des Molécules Marquées, BAT 547, CEN Saclay, 91191 Gif-sur-Yvette, France

(Received 13 December 1989; accepted 7 December 1990)

Abstract. (1) *erythro*-Tricarbonyl(η^4 -methyl 4-{5-[5-(*tert*-butyldiphenylsiloxy)-1,3-pentadienyl]-2-oxo-1,3-dioxolan-4-yl}butanoate)iron(*erythro*-carbonate), C₃₂H₃₆FeO₉Si, $M_r = 648.6$, monoclinic, C2/c, a =37·14 (1), b = 8.51 (1), c = 20.732 (6) Å, $\beta =$ 91·84 (7)°, V = 6549 (1) Å³, Z = 8, $D_x = 1.32$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 5.43$ cm⁻¹, F(000) =2720, T = 293 K, R = 0.049 for 3491 reflections. (2) Major threo-carbonate, $C_{32}H_{36}FeO_9Si$, $M_r = 648.6$, monoclinic, C2/c, a = 37.88 (1), b = 8.175 (5), c = 20.969 (8) Å, $\beta = 91.19$ (3)°, V = 6492 (1) Å³, Z = 8, $D_x = 1.33$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 5.48$ cm⁻¹, F(000) = 2720, T = 293 K, R = 0.051 for 2133 reflections. (3) Minor threo-carbonate, $C_{32}H_{36}FeO_9Si$, $M_r = 648.6$, monoclinic, $P2_1/c$, a = 24.96 (2), b = 10.646 (6), c = 12.232 (3) Å, $\beta =$

© 1991 International Union of Crystallography

Table 1. Crystal and refinement data for compounds Table 2. Atomic positional parameters and B_{eq} values (1), (2) and (3) for compound (1)

C9 C10

C11 C12 C13

C14 C15

C16

C17 C18 C19

C20

C21 C22

C23

C24

C25 C26

C27

C28 C29 C30 C31 C32 H9 H11

H12 H13

H14 H15

	(1)	(2)	(3)		
Crystal size (mm)	$0.10 \times 0.25 \times 0.30$	$0.05 \times 0.12 \times 0.15$	$0.05 \times 0.05 \times 0.10$	Fel	
2θ range (°)	2-50	2-50	2-50	Si 1	
h.k.l range	$0-40, 0-10, \pm 21$	$0-45, 0-9, \pm 24$	$0-29, 0-12, \pm 14$	01	
Standard reflections	115, 105, 034	12.0.4, 10.0.2, 10.0.2	204,204,203	O2	
Decay of	-0.4	-0.6	-0.9	03	
standards (%)				04	
Total reflections	6252	6241	4445	O5	
Unique reflections:	3491	2123	894	06	
Ι>σΙ				07	
Rint	0.019	0.027	0.025	08	
Parameters	407	407	174	09	
R	0.056	0.024	0.026	Cl	
wR*	0.049	0.021	0.052	C2	
S	1.52	1.66	2.6	C3	
N(obs)/N(var)	3491/407	2123/407	894/174	C4	
Max. $\Delta \rho$ (e Å ⁻³)	0.40	0.32	0.45	C5	
Max. $\Delta \sigma$	0.006	0.007	0.010	C6	
		D I (0 04 F 2)21 - 1/2		C7	
$* w = 1/\sigma(F_{o})^{2} = [\sigma^{-}(I) + (0.04F_{o})^{2}]^{-1}$					

93.59 (5)°, V = 3244 (2) Å³, Z = 4, $D_x = 1.33$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 5.47$ cm⁻¹, F(000) =1360, T = 293 K, R = 0.052 for 894 reflections. The structure of (2) presents a statistically disordered substituent.

Introduction. The *erythro* (1) and *threo* carbonates (2) and (3) are key intermediates during the preparation of the biologically important fatty acid metabolites lipoxin A and 5,6-dihetes (Gigou, Lellouche, Beaucourt, Toupet & Grée, 1989). In order to establish their stereochemistry unambiguously, X-ray diffraction studies were carried out.

Experimental. Single crystals of (1), (2) and (3) were obtained from an ether/hexane mixture. Data collected on an Enraf-Nonius CAD-4 diffractometer, $\omega/2\theta$ mode, variable scan rate ($t_{max} = 60$ s), graphitemonochromated Mo $K\alpha$ radiation. Unit-cell dimensions were obtained by a least-squares refinement of 25 reflections, and space group assignments are consistent with systematic absences and Laue symmetry. Lorentz and polarization corrections were applied but no absorption correction was made. The structures were solved with a Patterson map which allows

x	v	Z	$B_{\rm eq}$ (Å ²)
-0.16937(2)	1.0450 (1)	0.09162(5)	4.17 (2)
-0.06805(5)	0.6389(2)	0.11652(9)	4.01 (4)
-0.2085(2)	1.2477(8)	-0.0007(3)	11.8 (2)
-0.1058(1)	1.0594 (6)	0.0130(2)	6·9 (1)
-0.1917(1)	0.7256(5)	0.0553(3)	8.7 (2)
-0.3301(1)	0.3567(6)	0.1325(3)	10.3 (3)
-0.3620(2)	0.5649(7)	0.1286(4)	14.3 (3)
-0.2966(1)	1.0379 (6)	0.1931(3)	7·7 (1)
-0.2993(2)	1.1806 (7)	0.2830(3)	9·9 (2)
-0.2561(1)	1.2118 (5)	0.2133 (3)	7.4 (1)
-0.1009(1)	0.7699(4)	0.1204(2)	4·4 (1)
-0.1935(2)	1.167 (1)	0.0360 (4)	7.3 (2)
-0.1310(2)	1.0542 (7)	0.0450 (3)	5.5 (2)
-0.1830(2)	0.8453 (8)	0.0693 (3)	5.6 (2)
-0.3627(2)	0.270 (1)	0.1396 (5)	9.6 (3)
-0.3337(2)	0.5087 (8)	0.1302 (4)	7.2 (2)
-0.2993(2)	0.5915 (9)	0.1247 (5)	8-6 (3)
-0.3032(2)	0.7626 (8)	0.1227 (4)	8.3 (2)
-0.2689(2)	0.8624 (8)	0.1223 (4)	7.0 (2)
-0.2757(2)	1.0315 (7)	0.1364 (3)	4.8 (2)
-0.2852(2)	1.1476 (9)	0.2338 (4)	6.6 (2)
-0.2441(2)	1.1412 (7)	0.1529 (4)	5.4 (2)
-0.2074 (2)	1.0761 (6)	0.1633 (3)	4.4 (2)
-0.1783 (2)	1.1792 (7)	0.1712 (3)	5.0 (2)
-0.1436 (2)	1.1214 (7)	0.1747 (3)	4.3 (2)
-0.1384 (1)	0.9554 (7)	0.1713 (3)	3-9 (1)
-0.1008 (2)	0.8967 (7)	0.1656 (3)	4.4 (2)
-0·0759 (2)	0.5358 (7)	0.0381 (3)	4.8 (2)
-0.0706 (3)	0.646 (1)	-0·0188 (4)	9.0 (3)
-0.0491 (2)	0·3989 (8)	0.0317 (4)	7.5 (2)
-0.1138 (2)	0.4718 (8)	0.0335 (4)	6.8 (2)
-0.0238 (2)	0.7437 (7)	0.1226 (3)	4.1 (2)
-0.0201 (2)	0.8828 (8)	0.0893 (4)	6.0 (2)
0.0117 (2)	0.9686 (8)	0.0915 (4)	6.8 (2)
0.0401 (2)	0.9162 (8)	0.1257 (4)	7.2 (2)
0.0376 (2)	0.7759 (9)	0.1594 (4)	7.6 (2)
0.0059 (2)	0.6941 (8)	0.1574 (4)	5.8 (2)
-0.0725 (2)	0.4990 (6)	0.1858 (3)	4.0 (2)
<i>−</i> 0·0479 (2)	0.3811 (7)	0.2024 (4)	5.7 (2)
<i>−</i> 0·0536 (2)	0.2813 (8)	0.2547 (4)	6.8 (2)
-0.0824 (2)	0.2970 (8)	0.2912 (4)	6.7 (2)
-0.1075 (2)	0.4113 (8)	0.2755 (4)	6.4 (2)
-0.1029(2)	0.5094 (7)	0.2236(3)	4.9 (2)
-0.295(1)	1.067 (6)	0.111(3)	4*
-0.245(1)	1.211 (6)	0.125 (3)	4*
-0.208(1)	1.006 (6)	0.183(3)	4-
-0.181(1)	1.107 (0)	0.170 (3)	4-
-0.124(1)	1.18/(/)	0.101(3)	4-
-0.122 (1)	0.301 (0)	0.131 (2)	4

Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $B_{eq} = (4/3)[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + (2ab\cos\gamma)\beta_{12} + (2a\cos\beta)\beta_{13} + (2b\cos\alpha)\beta_{23}].$

the location of the Fe atom: after one or several scale-factor refinements and Fourier differences the remaining non-H atoms were found. In the case of (1) no particular problem was encountered: after refinements with isotropic, then anisotropic thermal parameters, many H atoms were found, the remainder were set in geometrical positions. During the resolution of (2), it appeared that the methoxycarbonyl substituent could have two positions, these positions correspond to a 180° rotation around the C8—C5—C4 axis, and are evaluated as 50/50 according to isotropic thermal parameters. Thus, there is statistical disorder in the crystal and

Table 3. Atomic positional parameters and B_{eq} values Table 4. Atomic positional parameters and B values for compound (2)for compound (3)

	joi compound (2)				jor compound (5)				
	x	v	Z	$B_{\rm ev}$ (Å ²)		x	У	Ζ	<i>B</i> (Å ²)
Fel	-0.16863(3)	1.0328 (1)	0.09770 (6)	3.93 (2)	Fe	0.3048 (1)	0.1691 (2)	0.2410 (2)	2.98 (4)*
Sil	-0.06560(6)	0.6373(3)	0.01187(1)	3.68 (5)	Si	0.1429 (2)	-0·1082 (5)	0.1222 (4)	3.2 (1)*
01	-0.1104(2)	1.0405(9)	0.0089(3)	7.1(2)	01	0.2883 (5)	0.135(1)	0.005(1)	7.4 (4)*
02	-0.1913(2)	0.6936(8)	0.0760(3)	$7 \cdot 3 (2)$	O2	0.2015 (5)	0.262 (1)	0.297 (1)	6.6 (3)*
03	-0.2104(2)	1.226(1)	0.0088(4)	$11 \cdot 1 (3)$	O3	0.3526 (6)	0.416 (1)	0.261 (1)	7.8 (4)*
04'	-0.3252(5)	0.369(2)	0.1234(9)	12.2 (6)*	O4	0.6322 (5)	0.223 (1)	0.5536 (9)	5.7 (3)*
04	-0.3537(4)	0.448(2)	0.1408(8)	10.1(4)*	O5	- 0.6375 (5)	0.287 (1)	0.389(1)	7.5 (4)*
05′	-0.3607(5)	0.569(2)	0.1225(8)	11.3 (5)*	O6	0.4994 (5)	0.100(1)	0.0965 (9)	5.4 (3)*
05	-0.2991(4)	0.396(2)	0.1381(8)	11.0(5)*	O 7	0.4710 (6)	0.229 (1)	-0.037(1)	8.5 (4)*
06	-0.2941(1)	0.9926(7)	0.1985(3)	5.4(1)	08	0.4208 (5)	0.200(1)	0.1050 (9)	5.6 (3)*
07	-0.3039(2)	1.1621 (9)	0.2789(3)	8.1(2)	09	0.1948 (4)	-0.032(1)	0.1739 (8)	4.1 (3)*
08	-0.2541(1)	1.1770(7)	0.2249(3)	5.6(1)	CI	0.2927 (7)	0.153 (2)	0.101 (1)	5.8 (5)*
09	-0.0966(1)	0.7768(6)	0.1203(2)	4.0(1)	C2	0.2427 (7)	0.228(2)	0.272(1)	4·1 (4)*
CI	-0.1328(2)	1.038 (1)	0.0439(4)	5.0 (2)	C3	0.3337 (7)	0.317(2)	0.253(1)	6.0 (5)*
C2	-0.1824(2)	0.026(1)	0.0839(4)	$5 \circ (2)$ $5 \cdot 0 (2)$	C4	0.6708 (9)	0.311(2)	0.591 (2)	8.3 (6)*
C3	-0.1939(2)	1.148(1)	0.0439(4)	6.3 (3)	C5	0.6189 (7)	0.217(2)	0.449(1)	5.2 (5)*
C4	-0.3594(3)	0.271(1)	0.1385(6)	9.6(4)	C6	0.5811 (6)	0.116 (2)	0.419 (1)	3.9 (4)*
Č5	-0.3280(3)	0.498(2)	0.1295(5)	10.0 (4)	C7	0.5517 (7)	0.133 (2)	0.312(1)	4.7 (4)*
C6	-0.3154(5)	0.470(2) 0.675(3)	0.1233(9)	6.7 (5)*	C8	0.5149 (7)	0.020 (2)	0.282 (1)	4.4 (4)*
Č6′	-0.2992(5)	0.673(3)	0.1171(9)	6.4 (5)*	C9	0.4743 (6)	0.041 (1)	0.189 (1)	2.9 (4)*
C7′	-0.2853(5)	0.713(3)	0.0893(9)	6.5 (5)*	C10	0.4625 (8)	0.180(2)	0.053 (2)	6.5 (5)*
C7	-0.3105(4)	0.796(2)	0.0938 (8)	4.7(4)*	C11	0.4286 (6)	0.136(1)	0.212(1)	3.5 (4)*
C8	-0.2776(3)	0.909(1)	0.0923(4)	6.2(3)	C12	0.3790 (6)	0.071 (1)	0.241 (1)	3.3 (4)*
Č9	-0.2642(2)	0.951(1)	0.1586(4)	4.2(3)	C13	0.3606 (6)	0.083 (1)	0·345 (1)	3.1 (4)*
CÍO	-0.2857(2)	1.114(1)	0.2375(4)	$\frac{1}{5}$ $\frac{2}{2}$ $\frac{2}{2}$	C14	0.3095 (6)	0.041 (1)	0.363 (1)	3.2 (4)*
CII	-0.2408(2)	1.106(1)	0.1661(4)	$\frac{3}{4}$, $\frac{5}{2}$	C15	0.2770 (6)	-0.016(1)	0.275 (1)	3.4 (4)*
CI2	-0.2029(2)	1.0642(9)	0.1747(4)	$\frac{1}{4}$, 0 (2)	C16	0.2209 (7)	-0.049(2)	0.281(1)	3.9 (4)*
CI3	-0.1766(2)	1.186(1)	0.1722(4)	40(2)	C17	0.1261(6)	-0.036(2)	-0.014(1)	3.8 (4)*
C14	-0.1417(2)	1.136(1)	0.1733(4)	$\frac{4}{4} \cdot \frac{1}{4} \cdot \frac{1}$	C18	0.1679 (8)	-0.058(2)	-0.092(1)	5.9 (5)*
CIS	-0.1342(2)	0.996(1)	0.1749(3)	3.6(2)	C19	0.1186 (8)	0.105 (2)	-0.001(2)	6.6 (5)*
C16	-0.0968(2)	0.911(1)	0.1630(4)	$\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{2}$	C20	0.0729 (8)	-0.087(2)	-0.060(2)	6.6 (5)*
C17	-0.0731(2)	0.524(1)	0.0414(4)	$\frac{4}{1}2(2)$	C21	0.1649 (6)	-0.274(1)	0.105 (1)	3.4 (4)*
C18	-0.0644(3)	0.635(1)	-0.0191(5)	7.9(2)	C22	0.1308 (7)	-0.374(2)	0.077(1)	5.2 (5)*
C19	-0.0486(3)	0.035(1)	0.0375(5)	6.8 (3)	C23	0.1486(7)	-0.500(2)	0.064(1)	5.5 (5)*
C20	-0.1110(2)	0.471(4)	0.0351(4)	6.3 (2)	C24	0.2032(7)	-0.518(2)	0.084(1)	4.8 (4)*
C21	-0.0216(2)	0.741(1)	0.1233(4)	$\frac{0.5(2)}{4.1(2)}$	C25	0.2391(7)	-0.429(2)	0.109(1)	5-1 (5)*
C22	-0.0176(2)	0.888 (1)	0.0898(4)	$\frac{1}{5}$, $\frac{2}{2}$	C26	0.2187 (7)	-0.305(2)	0.122(1)	4.7 (4)*
C23	0.0148(2)	0.060(1)	0.0904(5)	6.3 (2)	C27	0.0878 (6)	-0.089(2)	0.213(1)	3.7 (4)*
C24	0.0428(2)	0.909 (1)	0.1244(5)	6.6(3)	C28	0.0839 (7)	0.019(2)	0.275(1)	4.3 (4)*
C25	0.0398(2)	0.768(1)	0.1575(5)	7.0(3)	C29	0.0417 (8)	0.042(2)	0.341(1)	6.0 (5)*
C26	0.0074(2)	0.684(1)	0.1580(4)	5.4 (2)	C30	0.0024 (7)	- 0·039 (2)	0.348(1)	5.5 (5)*
C27	-0.0719(2)	0.4084 (0)	0.1884(4)	$\frac{3}{4}, 0, (2)$	C31	0.0049(7)	-0.151(2)	0.295(1)	5.8 (5)*
C28	-0.0480(2)	0.374(1)	0.2058(4)	5.4 (2)	C32	0.0455 (7)	-0.174(2)	0.226(1)	5.1 (4)*
C20	-0.0548(2)	0.271(1)	0.2582 (5)	5.9 (2) 6.9 (1)				00 ()	•••(•)
C30	-0.0845(2)	0.298 (1)	0.2022 (5)	6.0 (3)		Starred at	oms were refin	ed isotropically	
CN	-0.1081(3)	0.270(1)	0.2730(3)	6.2(2)					
C32	-0.1023 (2)	0.516 (1)	0.2771(4) 0.2246(4)	0.2(2)		<i>.</i>	, ,	18. 0	
С.52 Н0	= 0.252 (2)	0.86 (1)	0.178 (3)	4.0*	Tabl	e 5. Selected	bond distan	ces (A) for	compounds
H11	-0.232(2)	1.18 (1)	0.136(3)	4.0*		(1), (2) and (1)	3), with e.s.	d.'s in narent	heses
H12	-0.107(2)	0.08 (1)	0.701(4)	4.0*		(-), (-) what (-,,		
H13	-0.181(2)	1.30 (1)	0.165 (4)	4.0*			(1)	(2)	(3)
1115	0.101 (2)	1.20(1)	0.102 (4)	4.0.		E	1 775 (0)	1 700 (0)	

H15 -0.150 (2) 0.89 (1) 0.197 (4) 4.0* Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $B_{eq} = (4/3)[a^2\beta_{11} + b^2\beta_{22} + b^2\beta_{22}]$ $c^{2}\dot{\beta}_{33} + (2ab\cos\gamma)\beta_{12} + (2ac\cos\beta)\beta_{13} + (2bc\cos\alpha)\dot{\beta}_{23}].$

0.164 (4)

4·0*

1.21 (1)

-0.126 (2)

H14

because (2) crystallizes in two conformers there is a statistical repartition in the crystal. This result may be characteristic in the case of asymmetric compounds which present a non-linear optical behaviour. Furthermore, we have tested the possibility of the space group Cc with two molecules in the asymmetric unit: in addition to the problems of correlations owing to pseudo centrosymmetry we observe the same disorder for the methoxycarbonyl substituent. In the case of (3) there was a very low number

	(1)	(2)	(3)
FeCl	1.775 (8)	1.782 (8)	1.73 (2)
Fe—C2	1.749 (7)	1.793 (9)	1.74 (2)
Fe—C3	1.830 (7)	1.740 (10)	1.73 (2)
C101	1.154 (10)	1.134 (10)	1.19 (2)
C2—O2	1.165 (8)	1 143 (11)	1.15 (2)
C3—O3	1.105 (8)	1 149 (12)	1.16 (3)
C9—O6	1.429 (8)	1 461 (9)	1.47(2)
C9C8	1.492 (9)	1.509 (11)	1.49 (2)
C9-C11	1.532 (9)	1.555 (11)	1.56 (2)
C10-06	1.319 (9)	1 323 (11)	1.34 (2)
C10-07	1 195 (10)	1 188 (11)	1.25 (2)
C10-C8	1.294 (8)	1 332 (10)	1.27 (2)
C11	1.471 (9)	1 460 (10)	1.48 (2)
C11-C12	1.480 (8)	1.486 (11)	1.48 (2)
C11—H11	0.83 (6)	0.93 (8)	0.97
C12-C13	1.397 (8)	1.413 (11)	1.39 (2)
C12—H12	0.71 (5)	0.92 (8)	0.98
C13-C14	1.380 (9)	1 383 (11)	1.38 (2)
C15-C14	1.428 (8)	1 417 (11)	1.44 (2)
C15-C16	1.491 (8)	1.509 (10)	1.45 (2)
C15—H15	0.88 (6)	0.96 (8)	0.98
O9—Si	1.657 (4)	1.638 (5)	1.624 (11)
O9-C16	1.429 (7)	1.426 (9)	1.44 (2)

Table 6. Selected bond angles (°) for compounds (1),(2) and (3) with e.s.d.'s in parentheses

	(1)	(2)	(3)
Cl-Fe-C2	91.0 (3)	98.3 (4)	98·7 (8)
C2—Fe—C3	97.2 (3)	104-6 (4)	91.5 (8)
C1-Fe-C3	104-5 (3)	89.5 (4)	102.7 (9)
Fe-C1-01	178.7 (7)	178.8 (8)	174.0 (2)
Fe-C2-O2	178.8 (6)	179.1 (8)	177.0 (2)
Fe-C3-03	179.0 (6)	179.0 (9)	179.0 (2)
C8-C9-O6	107.4 (5)	109.4 (6)	111.0 (1)
C8-C9-C11	119-8 (5)	117.3 (7)	115.0 (1)
06-C9-C11	103.0 (5)	101.5 (6)	103.0 (1)
06-C10-07	124.9 (7)	124.2 (8)	118.0 (2)
O6-C10-O8	110.0 (6)	119.9 (7)	118·0 (2)
O7-C10-O8	125-1 (7)	123.9 (8)	124.0 (2)
O8-C11-C9	100.8 (5)	101.7 (6)	101.0 (1)
O8-C11-C12	109.4 (5)	109.8 (6)	111.0 (1)
C9-C11-C12	120.0 (5)	111.7 (6)	112.0 (1)
O8-C11-H11	107.0 (4)	102.0 (5)	117.0
C9-C11-H11	107.0 (4)	110.0 (5)	110.0
C12-C11-H11	112.0 (4)	120.0 (5)	106.0
C11-C12-C13	109-1 (5)	120.8 (7)	121·0 (1)
C11-C12-C13	109-1 (5)	120.8 (7)	121·0 (1)
C13-C12-H12	119.0 (4)	114.0 (5)	122.0
C11-C12-H12	112.0 (4)	118.0 (4)	117.0
C12-C13-C14	120.0 (6)	117-5 (7)	118.0 (1)
C13—C14—C15	118.6 (5)	119-0 (7)	120·0 (1)
C14-C15-C16	117.7 (5)	118.7 (7)	124.0(1)
C16-C15-H15	122.0 (4)	118.0 (5)	117.0
C14—C15—H15	114.0 (4)	119.0 (5)	118.0
C15-C16-09	108-8 (5)	110.3 (6)	108.0 (1)

Fig. 1. An ORTEP (Johnson, 1965) view of (1).

of reflections owing to the size of the available sample: so it was not possible to refine the structure with anisotropic thermal parameters and the H atoms were set in geometrical positions according to an sp^2 hybridization: under these conditions, if the *R* values are good enough, the e.s.d. values are rather large.

The best full-matrix least-squares refinements (use of F magnitudes) of these structures $[x, y, z, \beta_{ij}]$ for Fe, Si, C and O atoms, x, y, z for H atoms for (1); x, y, z, β_{ij} for Fe, Si, C and O atoms, x, y, z for H atoms but disordered substituent CH₂—CH₂— CO₂—CH₃ isotropic for (2); x, y, z, B for Fe, Si, C and O atoms, H atoms fixed for compound (3)]

gives the *R*, *wR* and *S* values presented in Table 1.* Atomic scattering factors from *International Tables* for X-ray Crystallography (1974, Vol. IV). All calculations were performed on a Digital PDP11/60 computer with the SDP-Plus package (Frenz, 1985).

* Lists of structure factors, anisotropic thermal parameters, complete distortions and angles, and H-atom parameters [for compound (3) only] have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53802 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. ORTEP (Johnson, 1965) views of (a) the first form of (2) and (b) the second form of (2).

Fig. 3. An ORTEP (Johnson, 1965) view of (3).

Fig. 4. Perpendicular and planar view of the butadienetricarbonyliron moiety.

Discussion. Table 1 contains crystal and refinement data for (1), (2) and (3), while Tables 2, 3 and 4 give the atomic positional parameters and B_{eq} values for the non-H atoms of the three compounds. Table 5 presents selected bond distances and Table 6 selected valence angles. Figs. 1, 2(a), 2(b) and 3 are ORTEP (Johnson, 1965) drawings of the three molecules. As can be seen from Tables 5 and 6, the three geometries are homogeneous, in particular for (1) and (2). In the butadiene-tricarbonyliron moiety, the two H atoms (H12 and H15) lie above the C12-C13-C14-C15 plane as shown in Fig. 4. The hybridization of the corresponding C atoms (C12 and C15) is intermediate between sp^3 and sp^2 as a result of complexation by the tricarbonyliron moiety (Messager & Toupet, 1986). With regard to the stereochemical outcome of this synthesis, in each case the first step of the reaction (the osmylation of the double bonds) occurs anti to the Fe(CO)₃ moiety. Thus, these results not only indicate the stereochemistry of the three compounds, but also show that stereocontrolled preparation of other natural product derivatives in this family is possible.

References

- FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- GIGOU, A., LELLOUCHE, J. P., BEAUCOURT, J. P., TOUPET, L. & GRÉE, R. (1989). Angew. Chem. Int. Ed. Engl. 28(6), 755-757.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MESSAGER, J. C. & TOUPET, L. (1986). Acta Cryst. B42, 371-378.

Acta Cryst. (1991). C47, 1177-1180

$\beta-\alpha$ Photoisomerization of Cobaloxime Complexes in the Solid State. II. A Topochemically Controlled Reaction

BY AKIRA UCHIDA* AND YUJI OHASHI

Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

AND YOSHIAKI OHGO

Niigata College of Pharmacy, 5829 Kamishinei-cho, Niigata 950-21, Japan

(Received 27 August 1990; accepted 2 January 1991)

Abstract. (β -Cyanoethyl)bis(dimethylglyoximato)-(pyridine)cobalt(III) (dimethylglyoximato = 2,3butanedione dioximato), [Co(C₃H₄N)(C₄H₇N₂O₂)₂- (C_5H_5N)], crystallizes in two forms. The rates of $\beta - \alpha$ isomerization by exposure to visible light differ for the two forms. One of the two forms, form I, has been reported previously [Zangrando, Bresciani-Pahor, Randaccio, Charland & Marzilli (1986).

* To whom correspondence should be addressed.

0108-2701/91/061177-04\$03.00

© 1991 International Union of Crystallography